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Abstract—Several features of the characteristics of a crack dynamically propagating along a bima-
terial interface are investigated and their results are presented in this paper. The stress intensity
factors of interface crack dynamics are accurately extracted from finite element field solutions using
a new conservation integral. This integral is based on the steady-state solution for a dynamically
propagating interface crack. It extracts the Mode I and II contributions of the mixed-mode crack-
tip field. The ratio of the mixed-mode factors, or the phase angle is an essential parameter in defining
the fracture resistance of dynamic interface cracks. A computational analysis is carried out for an
interface crack in an infinite plane under either remote tensile or shear loading. The phase angle
and the energy release rate of the growing interface crack with different crack-tip velocities are
obtained for several bimaterial combinations. For a short time after the initiation of a growth, the
energy release rate and the phase angle are found to be very sensitive to the crack-tip velocity. They
are much less sensitive to the mismatch in bimaterial properties. At late time, the phase angle merges
closer to the corresponding quasi-static values. A toughness formula based on critical energy release
rate is proposed for the dynamic interface crack. This toughness criterion is implemented in a newly
developed iterative procedure for computing crack propagation. With this procedure, the simulation
of crack propagation exactly follows the condition specified by the toughness function. No artificial
input or prior knowledge of the crack-tip velocity history is necessary. This is an effective method
which can be used to interpret experimental data. We have employed this iterative technique in the
simulation of published data for dynamic interface crack propagation to identify a correct toughness
formula. The analysis shows that the resulting velocity history agrees well with the experimental
record when appropriate parameters are chosen for the proposed toughness criterion.

1. INTRODUCTION

The need for a better understanding of interface fracture mechanics increases as the use of
composite materials in engineering structures increases. In many applications, the com-
posites may be subjected to dynamic loading or their failure mechanisms may involve
dynamic characteristics. Some fundamental features of dynamic interface cracks have been
discussed by Willis (1971) and more recently by Yang et a/. (1991). However analytical
solutions under these conditions are extremely difficult to obtain due to the complexity of
the problems. Thus a computational method is essential for investigating the various
features of dynamic crack propagation along bimaterial interfaces. To characterize dynamic
failure behavior in composites, it is necessary to develop well-defined procedures for extract-
ing the essential characteristics of the fracture process.

In this study, we establish a procedure to extract the mixed-mode stress intensity
factors of dynamically moving interface cracks from numerically calculated field solutions.
Experimental studies have shown that the ratio of Mode I to Mode 11 is important for
interpretation of the dynamic interface toughness. The stress intensity factors are computed
using specially formulated conservation integrals. Along with the energy release rate which
is determined with a separate integral, these factors are critical in understanding the interface
resistance to fracture. We also introduce an iterative method to simulate crack propagation
along a bimaterial interface. This is an extension of a method introduced by Nakamura
and Lo (1991) where an implicit scheme was used to propagate the crack through a
homogeneous material. The current method accounts for more complex mixed-mode effects
which are inherently present in the interface fracture field. In addition, a proper procedure
to propagate the crack tip using a node release technique in a full-plane bimaterial geometry,
and an accurate method to determine the energy release rate and the stress intensity factors
during the node release are described.
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Two types of dynamic interface crack growth are investigated in this work. First, we
simulate the initiation and propagation of an initially finite length crack in an infinite
medium (Griffith type crack) subjected to a static remote tensile or shear load. The full-
field finite element analyses are carried out with various crack-tip velocities. The computed
field solutions are used to determine the dynamic energy release rate and Mode I and 11
stress intensity factors. These fracture parameters are obtained with the domain integral
formulations, The phase angle is also determined from the ratio of the stress intensity
factors. Special attention is given to the transient behavior of both the energy release state
and the phase angle as the crack begins to propagate along the interface. In the second
case, we simulate a dynamic fracture testing carried out by Tippur and Rosakis (1991)
where a pre-cracked three-point-bend bar was loaded to fracture by means of dynamic
impact loading. Here, we propose dynamic crack growth criteria which govern the crack
propagation process. The main purpose is to illustrate how a postulated toughness criterion
can be determined using the iterative crack growth procedure. Several criteria are tested
and their resulting crack-tip velocities are compared to the experimental measurements
given by Tippur and Rosakis (1991). The transient behavior of the energy release rate and
the phase angle are also characterized in detail.

2. DETERMINATION OF DYNAMIC INTERFACE K

2.1. Crack-tip integral for dvnamic interface crack

Based on the fundamental crack-tip integral, the energy release rate % of an elastic
two-dimensional solid under dynamic conditions with a crack moving along the x ~direction
is

R aui

H

where the integrating path I" is an arbitrary contour surrounding a crack tip. The outward
normal unit vector of ' is denoted by n;. Also g;; and u; are Cartesian components of
stresses and displacements, respectively, W is the strain energy density and T is the kinetic
energy density at a material point. The above expression expresses the instantaneous energy
release rate for any crack configuration, including interface cracks, as long as the limiting
process is preserved, Under a steady-state crack growth condition and if the material
properties are constant along the x,-direction, the integral becomes path independent.

For a static elastic interface crack under a mixed-mode condition, an effective method
was introduced by Shih and Asaro (1988) to determine each stress intensity factor from
known field quantities. The extraction of these factors is important since the experimental
results show that the toughness of an interface depends highly on the ratio of shear to
tensile modes. The method is based on the linearity of material behavior and it uses a so-
called ‘interaction integral’ with an auxiliary field which is a solution to a crack problem
under some arbitrary loads. Similar methods have also been used to extract the three-
dimensional stress intensity factors (Nakamura, 1991) and T-stress (Kfouri, 1986; Naka-
mura and Parks, 1992). Here the method is extended to extract the stress intensity factors
of dynamically propagating interface cracks. As compared with the static case, the dynamic
procedure is significantly more difficult. It requires an accurate method to propagate the
crack and the auxiliary field itself is very complex. In the following, we describe how the
new interaction integral based on the conservation law of elasticity is derived.

We begin by considering two separate fields. The first one comprises the actual field
quantities, u;, 0, &;. W, T of the dynamic interface crack problem whose unknown stress
intensity factors are sought. The second one comprises auxiliary field quantities ™", o3,
g*, e T*** whose stress intensity factors are already known. Usually, they are solutions
to an interface crack problem under some specific loading condition. Suppose we super-
impose the actual and auxiliary fields, the resulting superimposed field quantities may be

denoted as **, o}, &, W™, T>", Note the superimposed displacements, stresses and
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strains are the simple sum of the two fields while the energy densities W*** and T™** are not.
The energy release rates associated with the auxiliary and superimposed fields can be
expressed as

X : aux aux aux au?ux
2 =%1£I(1)J;[(W +T**)n, —a}; o, nj:ldl", 2)
G = lim (Wsup 4 Tsup)n _gtp 5“?“]’ n ldr (3)
r'-o r ! Y axl 4 )

The energy release rate of the actual field is already shown in (1). Using correct relations
between the energy densities and after some algebra, the relationship between three energy
release rates is given as

gsup —_ g_i_gaux +I’ (4)

where 7 is the interaction or conservation integral and is given as

) e | OU; OUF™ ou™ Oy
I = 11_1_13‘(1) J; I:<O'ij8,~j +pa‘ ‘a‘)”l — (aij?x" +O-ij axl)nj} dr. (5)

Here p is the mass density of the material. This integral, the difference between %*** and
the sum of 4 and %**, is used to determine the stress intensity factors of the actual field as
discussed in the next section.

2.2. Extraction of dynamic stress intensity factors

Using the dynamic interaction integral (5) and the relationship between the energy
release rate and the dynamic stress intensity factors, one can effectively extract Mode I and
Mode II stress intensity factors. The relation between energy release rate ¢ and stress
intensity factors for the dynamic interface crack is given in Yang et al. (1991) as

F H,,
= — K 2 =
4 4u, IK| 4 cosh? (ne)

K|?,  whereK = K;+iKj,. (6)
Here % is the energy factor, p, is the shear modulus of the upper plane and K is the complex
stress intensity factor (i = ./ — 1), which is a common expression used in the study interface
fracture mechanics. The energy factor depends on the crack-tip velocity as well as the
material constants. Also H,, is a component of the so-called “hermitian matrix” discussed
in the next section. It reduces to H,, = 4/E* under a static condition with an interface crack
between two different isotropic solids. Here E* is the effective plane strain tensile modulus
defined as

1 1{1—v? 1—v§>
F‘i(E, TR ) @

The subscripts “1” and “2” in the Young’s modulus £ and the Poisson’s ratio v indicate
the upper and lower materials of the interface, respectively.

The following procedures demonstrate how the real and imaginary part of the complex
stress intensity factor of the actual field can be extracted. First, we consider the previously
described auxiliary field. The sum of the stress intensity factors of actual field K and the
auxiliary field K** is the stress intensity factor of the superimposed field K***. With (6), the
relationship among the energy release rates and the stress intensity factors may be given as
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Comparing (4) and (8) gives the following equation relating the dynamic interaction integral
I to the stress intensity factors of the actual and auxiliary fields :

H

= mzj—(ﬂ(K.K““"+K“K““ . )
This is the fundamental equation which connects the computable interaction integral I
shown in (5) to the unknown stress intensity factors of the dynamic interface crack K. The
idea here is to choose two suitable auxiliary fields whose complete field quantities, including
K™ and Ki*, are known a priori. Then, once two interaction integrals with respective
auxiliary fields are computed, the unknown K| and K|, of the actual field can be calculated.

Suitable choices for auxiliary fields are analytical solutions which give either pure
Mode I or Mode II fields. Furthermore, since the asymptotic singular K-fields have the
simplest form, these are usually selected as the auxiliary fields. The K-field solutions for the
dynamic interface crack were recently obtained by Yang er al. (1991). The details of the
asymptotic solutions and implementation of the auxiliary fields for I are described in
Sections 2.3 and 4.1, respectively.

2.3. Asymptotic singular crack-tip field

Under dynamic conditions, the asymptotic solutions are functions of the instantaneous
crack-tip speed. In general, the size of the crack-tip region dominated by the asymptotic
singular field is smaller than that of a stationary crack. This aspect and the effect of higher
order terms in homogeneous materials were recently discussed by Freund and Rosakis
(1992). The steady state or the singular fields close to the tip of a crack moving along the
interface of two anisotropic elastic solids is given by Yang et al. (1991). They used Stroh’s
(1962) steady-state formulation as a basis for deriving the solution. Their study shows that,
within a K-dominated zone, the crack-tip field consists of a coupled in-plane oscillatory
field characterized by a complex stress intensity factor and a non-oscillatory out-of-plane
field characterized by a real stress intensity factor. The latter field corresponds to the Mode
11T deformation and is not accounted for here.

The asymptotic field of the dynamic interface crack can be conveniently characterized
by the compliance-like hermitian matrix H. Directing attention to the in-plane deformation
of a crack moving along the interface of two different isotropic solids with a crack-tip
velocity v, the matrix H can be reduced to the following 2 x 2 complex variable matrix :

LU= | LU0 ,-(l?‘ﬁf?éi ' ‘+5\2‘25252>
H= mD, #2D D, 2D
_i<1+c%—2c.cl B 1+§%—2ézcz) A=) &=
D, #aD, D, paDs

(10)

where &, = /1 —(v/c})% (., = \/1 — /&), D, = 4&,L,— (1 —3)?, u, is the shear modulus,
and v is the crack-tip velocity. Also ¢f and c§ are the longitudinal and shear wave speeds,
respectively. Here o indicates for the upper (¢« = 1) and lower (a = 2) materials. The
components of the above matrix are used to define the crack-tip solution.

The asymptotic stresses within the K-dominated zone can be expressed in the following
form:
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where r, 8 are polar coordinates with their origins located at the moving crack tip and &},
and &1} are dimensionless angular functions. The explicit forms of these functions are given
in Yang et al. (1991). Also ¢ is the oscillatory index defined with Dundur’s parameter f§ as

O'ij(r,e;ﬁ) = 5:’,’(9;3)‘1“
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Here, H,,, H,, and H,, are components in matrix H (10). Unlike the static case, the
oscillatory index ¢ under dynamic conditions depends not only on the material mismatch
but also on the instantaneous crack-tip velocity . It is important to note that even for some
bimaterial combinations for which ¢ = 0 in the static case, ¢ is non-zero under dynamic
conditions (v > 0). This means the oscillatory behavior exists in the dynamic crack-tip field
for all bimaterial combinations except the homogeneous case. As in the static case, the unit
of the stress intensity factors contains an imaginary number when ¢ # 0.

Animportant parameter in defining the fracture toughness or the critical energy release
rate is the phase angle. It is essentially the ratio of the shear to normal traction ahead of
the crack which varies with the distance from the tip due to the oscillatory nature of the
field. Thus, the phase angle must be defined in terms of a characteristic length scale L as

. Im [KL¥) _ 1 3]
Y(L) = tan {_’—Re [KL"S]}_tan {(ELL} (13)

Here # is a traction resolution factor, n = ./ Hy/H,,. This factor has a small dependence
on the material properties and it increases monotonically with v, as shown in Fig. 5 of Yang
et al. (1991). We note that the stress intensity factors in (13) do not reduce to the classically
defined dynamic stress intensity factors for an isotropic homogeneous material since n 5 1
even for a homogeneous crack. This discrepancy arises because the angular functions 4;;
shown in (11) do not degenerate to the ones shown by Freund (1990) for the homogeneous
case. Since the phase angle (13) is a function of length, when the distance changes from L,
to L,, the difference of the two phase angles is

(12)

AY = Y(L)—Y(Ly) = ¢ln (%) (14)

In the static case, where ¢ is generally very small, this difference remains relatively small.
However, ¢ can be very large in the dynamic case, especially at a high crack-tip speed.
Consequently Ay can be quite large, and the choice of L must be made more carefully in
the dynamic interface crack.

3. DYNAMIC INTERFACE CRACK GROWTH CONDITION

3.1. Growth criteria

It is useful to establish a toughness formula for a dynamically propagating interface
crack. Such a formula will help in interpreting experimental data. Accurate determination
of fracture parameters is quite difficuit for dynamic interface crack experiments. We pos-
tulate that a criterion for crack propagation can be solely controlled by the instantaneous
energy release rate. Then, a continuous growth is possible if the driving force ¢ is at least
equal to the dynamic fracture toughness. Physically, the dynamic fracture toughness of an
interface crack ¥p may depend on several factors. We assume %, is given as a function of
the instantaneous crack-tip velocity and the phase angle. Under these conditions, crack
propagation is expressed as, ¢ = %p(v, ¥). There has been limited experimental work in
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this area, and no accurate data exist for the toughness of dynamic interface cracks. Lacking
empirical correlation, the growth criterion proposed here is based on a superposition of
formulae for the static interface crack and the dynamic homogeneous crack. The accuracy
of the proposed formula cannot be determined without sufficient experimental data.
Nonetheless the formula should help to interpret the future experimental measurements,
and demonstrate its accuracy by coherency of its ability to fit the data.

Many static experiments on the bimaterial interface have shown that the interface
fracture toughness depends strongly on the mode mixity or the phase angle of the crack-
tip field. Toughness has been observed to increase as the shearing mode increases in the
crack-tip region. This is partly explained by the larger frictional contact of the crack
faces. Hutchinson and Suo (1991) suggested a formula for the interface toughness with a
parameter 4,

g

Y4 = T+W_m .

(15)

Here ¥ is the reference toughness under y = 0°. When 4 = 0 is chosen, the interface
toughness is determined by the critical interface hoop stress. For 4 = 1, the interface is
ideally brittle and the mixed mode fracture toughness %. is equal to 4¥ independent of the
phase angle. Hutchinson and Suo (1991) have indicated 4 = 0.3 fits well the experimental
measurements of epoxy/glass interface and we have chosen this value for the analysis shown
in Section 6. Other formulae also exist but their essential features are similar to (15).
There have been many experimental analyses of dynamic crack propagation in a
homogeneous solid. Several empirically based formulae have been introduced for the
dynamic toughness. In general, their measurements show the fracture toughness to increase
under higher crack-tip velocity [see for example, Kobayashi and Dally (1979), Rosakis er
al. (1984) and Ravi-Chandar and Knauss (1984)]. Theoretically, the limiting or the upper
bound of the crack-tip velocity vy, is the Rayleigh wave speed ¢y for the homogeneous
material, although the maximum velocity observed in most experiments is well below ¢y
except for tests under extremely high rate loading conditions (Ravichandran and Clifton,
1989). Many of the proposed formulae are similar, but there is yet to be a unified formula
for various materials. Here we choose the following function for the dynamic toughness :

Go(v:7) = Gra(t —vfvim) 7, (16)

where %, is a constant and can be regarded as the initiation toughness under Mode I
loading. The effects of loading rate are not taken into account in the above formula. The
parameter y can be varied to optimize the function to the experimentally observed fracture
toughness of a dynamically growing crack. It allows the formula to cover a wide range of
materials. This function models the theoretically infinite energy release rate required for
the crack tip travelling at the limiting velocity vy, when y > 0. If y = 0 is chosen, the
toughness is constant and independent of crack-tip velocity. In a homogeneous material,
the limiting velocity is taken as the Rayleigh wave speed, v, = cg. For y = 1, the above
function represents a close approximation to a universal function which relates the static
energy release rate to the dynamic energy release rate [see Freund (1990)].

Although no detailed measurement has been made for the dynamic interface crack, we
postulate a combination of the two formulae (15), (16) as a possible toughness criterion.
The proposed criterion is expressed as

. _ g5 -U/Ulirl):
VA = 1 T sy ()

where %, can be regarded as the dynamic crack initiation toughness when = 0°. Since no
extensive data exist for the dynamic interface crack, the above function is only a candidate
for the toughness formula. Other forms of the function which represent similar relationships



Analysis of dynamic crack propagation 151

. . . y v
30“\‘9»("-?’17\-7)
A=0.3, y=0.2

v/ Vim=0.8

$u/84

increasing velocity

\ constant ¥ model E

[ (A=1,7=0)
0 i n 1 . 1 i e 1
0° 30° 80° 90°
phase Angle (¥)
(a)
L e o T S N s S e e e s e s S s Mase I S
Gp=$p{v. A7) 1
4r increasing
r phase angle
of
w ¥=60°
~ !
a [
N 2
l- ——————————————————————————— g
! ""\ constant ¥ model
(x=1y=0)
[+] PR ) A i 1 L 3, i A, i i 1 P i 1 P
0.0 0.2 04 0.6 08 1.0

crack tip velocity (v/vy,)
(o}

Fig. 1. Models for fracture toughness criteria %p{v, ¥; 4, 7) in (17) with A1 =103 fznd y=02
(a) Normalized toughness plotted as a function of phase angle for various crack-tip velocities.
(b) Normalized toughness plotted as a function of crack-tip velocity for various phase angles.

between %y, and v, Y can also be proposed. The advantage of the above function is that it
is simple, physically based, and has the freedom to cover a wide range of possible criteria
by changing the parameters A and y. The family of curves representing the toughness
function for A = 0.3 and y = 0.2 is shown in Fig. 1. The curves in Fig. 1(a) are plotted as
a function of the phase angle for various crack-tip velocities. As the crack-tip velocity
increases, the curves shift upward, indicating a greater energy release rate to propagate.
The toughness curves in Fig. 1(b) are plotted as a function of crack-tip velocity for various
phase angles.

For the dynamic interface crack, the definition of a limiting velocity is rather ambigu-
ous. Yang et al. (1991) have reported that the energy release rate is still finite when the
crack-tip velocity is equal to the slower Rayleigh wave speed of the two materials. However,
they did not discuss the limiting velocity at which the energy flow into the propagating
crack becomes infinite. Here, an attempt is made to determine the limiting velocity of
interface cracks by computing the energy factor & in (6). We determine the velocity
when this energy factor becomes infinite. Obviously, the limiting velocity depends on the
properties of two materials, The limiting velocities are computed for a bimaterial with
P = P2, v; = v, = 0.3 and various ratios of the Young’s modulus. The velocity is nor-
malized by the shear wave speed of slower material ¢} and plotted as a function of E,/E,
in Fig. 2. For E,/E, = 1, we have a homogeneous solid and vy, = cg. As the ratio of
stiffness increases, the limiting velocity increases rapidly to the upper bound which is the
slower shear wave speed of the two materials (v, = c8). In fact, vy, is within 1% of ¢} for
E,/E, > 4. Thus for all practical purposes, ¢} can be approximated as the limiting velocity
of most interface cracks. The physical interpretation of the crack-tip field when v > ¢} is
not clear since the oscillatory index ¢ becomes a complex number in this range.
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Fig. 2. The limiting velocity of a bimaterial crack tip (determined by & — o) for various ratios of

the bimaterial modulus. The velocity is normalized by the shear wave speed of the slower material.

The Rayleigh wave of the slower material is indicated for reference. (Note the zero suppression on
the ordinate axis.)

3.2. Contact condition behind the crack tip

For the energy release rate to be the characterizing parameter in linear elastic materials,
the moving crack tip must be surrounded by the mixed-mode K-field. However, in general,
the contact of upper and lower crack surfaces behind the interface crack tip exists when
e # 0. In the vicinity of the contact zone, the K-field solution (11) cannot be valid. The
existence of a K-field can be examined by studying the displacement jump across the crack
surface (6 = + 7). The estimated displacements can be obtained from the dynamic interface
K-field solution as

d,+ind, = M /Lei[w(u—zar'<2s)+eln(r/m1, (18)
1+4e*coshne \V 2n

where J, and d, are the opening displacements in the x, and x, directions behind the crack
tip, respectively. The characteristic length L is used here to define ¥. The contact of the
upper and lower crack surfaces occurs when d, < 0. Based on the above equation, this
condition takes place when ¢ # 0 regardless of the magnitudes of stress intensity factors. If
the contact region is sufficiently small so that the K-dominated region exists outside such a
region, then the stress intensity factors can still be regarded as the characterizing parameters
for the crack-tip field.

It is useful to estimate the size of the contact region for dynamically propagating
interface cracks. If the size of the contact region is denoted by r., then the estimate for the
contact size (Rice, 1988) can be made from the displacement jump (18) as

— 22— y(L)+tan" '(28)]. (19)

r. = Lexp l: .
In the above equations, the denominator ¢ indicates that r. increases exponentially as ¢
increases. Note that r. is independent of the magnitude of K but it does depend on the
velocity through the value of ¢. In the static case, the contact zone size depends on both the
material mismatch and loading conditions. Usually ¢ is small so that the contact zone is
confined to the region close to the tip unless a relatively large shear deformation exists.
However, in the dynamic case, ¢ can be large under high crack-tip speed. In fact, ¢ becomes
unbounded when the crack-tip velocity approaches the limiting velocity, v;,. Suppose
r./L < 0.01 is chosen as the condition for the existence of the K-field (i.e. small contact
zone), then ¥ (L) must satisfy the following conditions :
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- ; +tan~'(2e)+4.6c < Y(L) < g +tan~'(2). (20)

For example, if we consider two materials with E,/E, = 5, v, = v; = 0.3, p, = p,, then for
vjel = 0.6, ¢ = 0.0989 and the estimated contact zone size is r./L =9.2x 1077 when
W(L) = 0° (see results of Section 5). The allowable range of the phase angle can be
determined from (20) as —53° < y(L) < 101°. For cases with ¢ < 0, ¢ changes —¢ and
(L) changes —y/(L) in both (19) and (20). We emphasize that the above condition is a
simple approximation and the actual requirement for the existence of the K-field is probably
more restrictive since the size of the K-dominated field for a moving crack is much smaller
than the static case (Freund and Rosakis, 1992).

4, COMPUTATIONAL PROCEDURE

4.1. Domain integral form

The fundamental crack-tip integral for the energy release rate (1) as well as the
interaction integral (5) are given in terms of the limiting field or the near tip quantities. From
a discrete computational point of view, these expressions are not suitable for evaluating ¢
and 7 since the precise numerical evaluation of the limiting fields is difficult. An accurate
procedure based on the “domain integral formulation” is adopted here. In the formulation,
we use a weighting function g to transform these path integrals to an area/domain integral.
The derivation is similar to the one shown for the static case in Shih and Asaro (1988).
With the use of the divergence theorem and the equation of motion, the domain integral
form of % is

du; dq dq %u; Ow;  Ou; 62u,-)
g“L["‘féiTE“(W+T)&T+"(Eﬁgﬂ_ﬁwaxlat 9|44, (@)

where 4 is the domain enclosed by the path T" and crack surfaces. For the interaction
integral, it is

e f [(0_ O™ _6&) % ( gy, 6u?°*) oq
= I\ ax, T ax Jax, T \% TP Tar ) ax,
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The weighting parameter ¢ is a smooth function of x,, x, and has a value of zero on I' and
unity at the crack tip. The domain integral expressions are implemented in post-processing
programs to evaluate ¢ and 1. For the auxiliary solutions, we used the asymptotic solutions
of a steady-state interface crack given by Yang et al. (1991). We derived the explicit
expressions of their displacement gradients and they are in the Appendix.

In order to compute ¢ and 7, 5 to 6 domains enclosing up to 500 elements are typically
chosen. The locations of the domains must move with the crack tip as it propagates through
the interface. The variations of ¢ from different domains are used to check the accuracy of
the solutions.

4.2. Simulation of crack propagation

A number of techniques exist for simulating crack propagation in the finite element
analysis. Here, the ““node release technique” is adopted. The advantage of this technique is
that it requires no special type of element or remeshing of the model at every increment.
Thus, any existing or commercially available finite element codes can be used. We tailored
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the node release procedure for the dynamic interface crack analysis and the brief description
is given below.

Two key points separate the current procedure from the usual dynamic crack propa-
gation in a homogeneous material. First, both upper and lower planes of the crack must
be modeled since the symmetry condition never exists in the interface crack model. Unlike
the symmetrical case where a simple release of the prescribed boundary condition at a node
is carried out, the bimaterial crack requires two sets of nodes, one belonging to the upper
plane and the other belonging to the lower plane, to be placed along the interface. Initially
they are constrained to displace together until the crack tip reaches the node location. At
this time, the constraint holding the two nodes is removed and equivalent forces are applied
to hold them together. The magnitude of forces are determined from the net force through
these nodes. Unlike the pure Mode [ case, the force vectors contain not only the x,
component but also the x, component. It is because the interface crack always has a Mode
1I contribution. During the crack tip advance through one element length, the magnitudes
of these force vectors (total of four components) are gradually reduced to zero over five
increments. We have tested with more increments and found five increments per crack-tip
advance over an element to be sufficient to obtain accurate results. The amplitude of each
force component is reduced linearly with time. At every increment, both 4 and 7 are
computed from the field solution and the average 4 and I over five increments are deter-
mined. They are reported as % and 7 of the mid-step or when the crack-tip is mid-way. By
comparing with the exact solutions of homogeneous cracks, this method of computing 4
and 7 is found to give the most accurate solutions.

4.3. Iterative scheme for crack propagation

In the past, most computational simulations of dynamic crack propagation were
carried out with a pre-determined crack-tip velocity history. Sometimes, the crack-tip
velocity was set constant throughout the propagation or else its variation with time was
pre-set with a given record of experimental data. Here, we introduce a new approach to the
simulation analysis. This is a stable method and uses an iterative scheme to determine the
instantaneous crack-tip velocity. Physically, the velocity is influenced by the current loading
condition and a given dynamic toughness criterion. An overview of this method is stated
below.

First we assume that the criterion for the crack propagation depends solely on the
energy release rate as described in Section 3.1 and the toughness is given as a function of v
and . Thus, the condition for the crack propagation is ¢ = %(v, ¥). Our goal is to match
the driving force % and the criterion %, for a given set of v and . But the phase angle ¢
cannot be artificially controlled if we assume the crack to remain on the interface during
the propagation. Thus, the only variable that may be varied to achieve ¥ = %y, is the crack-
tip velocity ». Two different approaches may be possible. One is to take many small time
increments and use v and i from the previous increment to estimate current % and choose
appropriate v to get the condition ¢ = %,,. The disadvantage of the explicit scheme is that
the solutions may become very unstable (i.e. the resulting v can be highly oscillatory),
especially when the loading is not smooth. The other method is to use larger time increments,
but iterate on v till the condition ¥ = %, is satisfied. This implicit scheme produces more
stable solutions and is the better of the two under general loading conditions.

We implemented the latter iterative scheme with the node release technique in our
analysis. The scheme is also applicable to other techniques such as node shifting, moving
crack-tip elements, etc. We note that the explicit scheme is unsuited for the node release
technique since the smallest time increment is limited by the lengths of the crack-tip elements.
As described in the node release procedure earlier, the time for the crack to advance over
an element must be set before the start of each release. This requires the crack-tip velocity
of the step to be known a priori so that we can input the time interval for the step. During
the iterations, we try to obtain the optimum velocity or the suitable time increment so that
the resulting % is equivalent to the dynamic fracture toughness %p. (Note that varying the
time increment changes not only ¢ but also %, since v and ¥ change.)
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For advancing the crack tip over an element length, the following procedure is taken.
Suppose the average crack-tip velocity over the nth advance is estimated as v,, then any
difference or error between ¢ and %y, is,

f(vn) = g_gb(vm l/’n) (23)

Here y, is an implicit function of v, since the value of the phase angle cannot be directly
controlled. Our goal is to find a suitable v, with the resulting , which minimizes the error
function f(v,). For this operation, we use the “secant iteration method”’ to find the optimum
v,. This method is used here instead of the usual Newton method because the derivative of
f(v,) is not known explicitly.

The iterations are continued until the convergence is achieved. During the (k4 1)th
iteration of nth advance, the velocity based on the secant method is computed as

k—1 k k
vkt = k4 (O VACY) - “v"){fv,"). (24)
f@)—f @)

For each iteration, a complete process of the node release (discussed in Section 4.2) through
the same set of crack-tip elements is repeated (i.e. each iteration requires five increments of
finite element calculations). This is necessary because the dynamic energy release rate and
the phase angle are obtained only after the crack-tip traverses an element length. As the
new velocity is predicted by (24), the finite element program restarts from the end of
the last converged (n— 1)th advance and repeats the whole node release procedure. The
convergence occurs when the computed %% satisfies the following condition :

|95 — %oV, ¥2)|/%n < TOL, (25)

where % is the energy release rate of the kth iteration for the nth advance with the trial
crack-tip velocity »%. In the analysis, we have set the tolerance level to TOL = 0.01. Since
f(v) is not known explicitly, (24) can only be used after the second iteration is over. For
the first iteration, the crack-tip velocity from the previous advance is used as the initial
guess (i.e. v} = v,_,). For the second iteration, the velocity »? is determined by combining
vy with a simple function a(f}). For example, if f(v}) is positive, it indicates the crack-tip
velocity is lower than the equilibrium state. Then, ¢? is increased (i.e. a(f}) > 1), so that
the resulting energy release rate will be smaller. The amount of velocity increase over 2 is
determined from the magnitude of f(v}). If the convergence is not achieved by the second
iteration, (24) is used to predict the velocity in the subsequent iterations. When the predicted
crack-tip speed becomes very small, the program assumes the crack is arrested and the node
release is halted. Only when the driving force ¢ surpasses %5 (v = 0, ) at a later time, is the
node release procedure resumed. For the class of problems analysed here, the convergence is
achieved typically within 34 iterations, or 15-20 total number of increments per advance.
The rate of convergence primarily depends on two factors : the smoothness of the % (v, ¥)
function and the rate of loading to the crack-tip region.

The complete flow chait of this iterative crack advance scheme is shown in Fig. 3. Also
the node release step is depicted in the figure. Any other techniques (e.g. node shifting) can
be implemented in this scheme by replacing the node release step with an appropriate
procedure. Since secant method shown here does not require an explicit knowledge of
derivatives of 4 and %, with respect to v, any crack growth criteria ¢, can be applied to
this iterative scheme.

5. A FINITE CRACK IN AN INFINITE MEDIUM

5.1. Computational model
For the first study of the dynamic crack moving along the bimaterial interface to
extract stress intensity factors, a finite crack with its initial length 2a, resting on the interface
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FLOW CHART FOR CRACK ADVANCE SCHEME
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Fig. 3. Flow chart of the iterative scheme used to advance the crack tip. A procedure for node
release is also shown.

of two infinitely large isotropic solids is considered. The crack contains two tips and is
subjected to either a remote tensile load ., or a remote shear load 7_,. At a certain time,
t = 0, two crack tips begin to propagate simultaneously in opposite directions. It is assumed
that the velocity is constant and the crack remains along the interface all the time. The
geometry and loading conditions are shown in Fig. 4.

We have tested three different sets of bimaterial properties. For simplicity, we choose
Poisson’s ratios and the mass densities of the upper plane (material 1) and the lower plane
(material 2) to be always the same at v = 0.3 and p = 1.3461, respectively. Only the ratio
of Young’s moduli is changed as (1) E,/E, = 1 (homogeneous case), (2) E,/E, = 5, (3)
E,/E, = 25 for the three cases. The static oscillatory index for the interface crack cases is
£ =0.0614 for (2) and & = 0.0860 for (3). Our primary interest for this analysis is to
determine the dynamic stress intensity factors during a transient state and to investigate
how the phase angle changes as the crack propagates under a remote loading condition.

In the model, we set the crack with initial length 24, to lie on the x,-axis and the origin
of the Cartesian coordinates to be at the mid-point of the crack. The half-width and
half-height of the model are chosen to be W/a, = 40 and H/a, = 40, respectively. These
dimensions are large enough so that waves generated from the crack propagation do not
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Fig. 4. Schematic of a large plane strain bimaterial plate containing an interface crack with an initial

length 2a,. Material 2 is always stiffer than or equal to Material 1. The plate is subjected to either

remote tension or shear. Propagation of both crack tips is assumed to occur simultaneously with
the same velocity.

reach back to the crack tip after they are reflected at the outer boundaries during the time
interval of interest. This condition is required for the simulations of crack propagation in
an infinite plane.

Two types of loading conditions are considered. One is pure tension and the other is
pure shear. With a proper weighting of the solutions from these two conditions, one can
determine solutions of any other loading conditions. For the tensile case, a symmetry
condition exists across the x,-axis and only a half of the model needs to be modeled.
However, a full model is needed for the shear loading case since no symmetry exists. In
constructing the finite element mesh, special care has been taken to design the mesh to
maximize the accuracy with the available computational resource. The mesh of the full
model shown in Fig. 5 contains 2944 four-node linear elements. The linear type of element
is used since higher order elements are not well suited for the node release method. Very
small elements are placed near the crack and element sizes are gradually increased with the
distance from the crack. Along the boundaries of different sized elements, the displacement
constraint is imposed so that the continuity requirements are not violated. Additionally,
the ratios of any adjacent element sizes are kept, at most, to four to minimize possible
spurious wave reflections at the element boundary. In the vicinity of the crack, the element

X

elements near the crack

—_ Xy

Fig. 5. Finite element mesh of the bimaterial plate. The elements near the crack are enlarged.
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Fig. 6. The results under tensile loading for various crack tip velocities and bimaterial properties as
a function of normalized time after the initiation ; (a) the normalized dynamic energy release rate,
(b) the phase angle with L = a,,.

size is chosen to be a,/16. The computations are carried out for at least 20 node release
steps, or the equivalent of Aa > 1.2a,. We note that the fracture parameters of the first few
node releases are not very accurate due to the highly transient nature of the crack-tip field.

Three different crack velocities are chosen for the analysis. They are v/cl = 0.4, 0.6,
0.8 where c{ is the shear wave speed of material 1. For the set of material properties chosen
here, the wave speeds of material 1 are always less than those of material 2 except for the
case (1) when both materials are identical. Since the crack-tip velocities are pre-set, the
iterative scheme discussed in Section 4.3 is not used here. Using the domain integral forms
(21), (22), % and I are computed at every increment. The two values of I obtained with
two different auxiliary solutions are used to determine K| and K|;. For expressing the phase
angle (13), we choose the half-length of the initial crack (a,) to be the reference dimension
(L = ay).

5.2. Tensile dominated cases

Using the symmetry condition across the x,-axis, only the right half of the finite element
mesh (Fig. 5) is used. Initially the plate is loaded by remote tension, o.,. Before the crack
initiation, the static stress intensity factors are computed with the interaction integral and
the results are compared to the exact solutions, K = a@\/a(l +i2¢) (Rice and Sih, 1965).
All the results were within a few percent of the exact solutions. The normalized ¥ before
the initiation for the three cases are %/(c6%.a,/E*) ~ 3 (note that E* is different for each
case). In general, the dynamic energy release rate drops immediately following the crack
growth initiation then gradually increases [except for the case (1) with v/ci = 0.8] as shown
in Fig. 6(a). The drop in ¢ is consistent with the analytical solution of homogeneous
material where the dynamic stress intensity factor is given as K;(vt, v) = k(v)K,(vt, 0). Here
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k(v) is the universal function which relates the static K; to the dynamic K [see Freund
(1990) for details). The universal function vanishes as the crack-tip speed approaches the
Rayleigh wave speed (i.e. k(cg) = 0)]. We also observe that when the energy release rate is
normalized by ¢% a,/E*, the differences among the various bimaterial combinations are
small while ¢ is much more sensitive to the crack-tip velocity. In the figure, the elapsed
time after the initiation is normalized by the initial half-length of the crack a, and the
longitudinal wave of material 1.

For the homogeneous crack case (1) under tensile loading, the crack-tip field consists
of a pure Mode I field and the phase angle is always zero regardless of the velocity as shown
in Fig. 6(b). For the interface crack cases (2) and (3), K; and K, are both non-zero since
the material mismatch creates the mixed mode condition near the tip. Their initial phase
angles are ¥ ~ 7° for the case (2) and Y ~ 9° for the case (3) when the characteristic length
is taken as L = a,. The figure indicates a sharp rise in  and gradual decrease afterward
for those cases. At the high speed (v/c} = 0.8), the angle increases as much as 45°. Although
not shown here, K|; decreases gradually after the initial increase while K, continues to
increase with time. Except for case (1), the behaviors of phase angle for both interface crack
cases are very similar as long as their crack-tip velocities are the same. It appears that the
difference in phase angles from various crack-tip velocities narrows as the steady-state
condition {f — o) is approached.

5.3. Shear dominated cases

We have also carried out the analysis under remote shear loading, ... Again, the static
stress intensity factors were computed before the propagation and they were close to the
exact solutions. The dynamic energy release and the phase angles for the three cases with
three different crack-tip velocities were determined. The whole model shown in Fig. 5 is
used for the shear case. In addition, the crack advance is carried out at both ends of the
crack (i.e. the two crack tips traveling in opposite directions with the same speed). In the
analysis, we computed ¢ (also K; and K);) at both crack tips to make sure they are identical
to each other.

The behavior of ¢ as shown in Fig. 7(a) is similar to the one under tensile loading.
The initial drop is followed by the gradual increase. The phase angle also shows the sharp
change and gradual decrease in Fig. 7(b). All the results tend to the corresponding static
values as the time progresses. For case (1), the phase angle remains y = 90°.

5.4. Combined loading and small contact condition

The results of tensile and shear loading conditions can be used as basic solutions for
determining the energy release rate and the phase angle under general or mixed loading
conditions. Suppose remote loading is given by the tensile stress m,o., and the shear stress
m;t,, where m, and m, are the multiplier coefficients and ¢, and 7, are the positive reference
loading magnitudes. Then the dynamic energy release rate under combined loading is

G(t) = m% (1) +miG,(t) + 2mm /%, (1)%.(1) cos [, (1) — ()] (26)

Here %,(r) and % (1) are the energy release rates under the reference tensile o, and shear
7., loading conditions. Also y,(¢) and y,(¢) are the phase angles under reference load o,
and 1., respectively. These results are obtained in the previous sections and shown in Figs
6 and 7. Typically, the third term on the right-hand side of (26) is very small since |y, — |
is close to n/2, and thus this term can be ignored. In fact under the static condition, it is
always n/2. By taking |, —y,| = n/2, the phase angle under combined loading can be
simply determined as

m.T
t) =tan™! L
¥(t) = tan {”ma

tY o0

} +¥ (). @7

Here 7 is the previously introduced traction resolution factor. We can also use these results

SAS 31:2-8
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Fig. 7. The results under shear loading for various crack-tip velocities and bimaterial properties as

a function of normalized time after the initiatiation; (a) the normalized dynamic energy release
rate, (b} the phase angle with L = a,.

to find the contact condition discussed in Section 3.2. Under combined loading, there must
be sufficient tensile loading to open up the crack faces to avoid a large contact region
behind the crack tip. For case (2) (E,/E, = 5) with v/c} = 0.6, the small contact condition
(necessary for the K-dominance) requires m, > 0 and the ratio of remote shear to tensile
load to be

MTo
Gy,

<20 whenm,<0,

m,, (28)

mnoy

<95 whenm,>0.

As stated earlier, the region of K~dominance gets smaller as the crack-tip velocity increases
(Freund and Rosakis, 1992), and the requirement of small contact is probably more
restrictive.

6. SIMULATIONS OF DYNAMIC INTERFACE CRACK TESTING

6.1. Computational model

A limited number of experiments have been conducted to measure the dynamic
response of interface cracks. The only data available to us is the work of Tippur and Rosakis
(1991) where they conducted an experiment using the CGS (Coherent Grading Sensing)
technique to measure deformation fields near the growing crack tip. Using the static
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Fig. 8. (a) Schematic of the 3-point bend specimen used by Tippur and Rosakis (1991) for the
dynamic interface testing. The impact occurs at the mid-span of the specimen. (b) Plane stress finite
element model of the 3-point bend specimen.

asymptotic interface crack-tip field, they obtained the initiation toughness of the interface
crack along PMMA and aluminum alloys under an impact loading condition. After the
initiation, they were unable to measure the dynamic ¢ of the propagating interface crack.
However, they recorded the accurate crack-tip velocity history during the propagation. We
have chosen their model to simulate the dynamic crack growth and to implement the
iterative scheme discussed in Section 4.3.

Figure 8 shows the PMMA /aluminum bimaterial specimen in the three-point-bend
configuration. In the experiment, the specimen was loaded to fracture by means of the drop
weight impacting at the mid-span of specimen. The thickness of the plate is 9 mm. A notch
of initial length @, = 25 mm was cut through the interface after two materials were bonded
together.

We have constructed a finite element mesh using 2412 four-noded elements, as shown
in Fig. 8. In carrying out the analysis, we have assumed the plane stress condition, which
is also the approximation made by Tippur and Rosakis (1991). The length of the elements
in the vicinity of the crack is chosen to be a,/25. The element sizes are increased in relation
to their distances from the crack. We used the material properties reported by Tippur and
Rosakis (1991). They are E, = 3.24 GPa, v, = 0.35, p, = 1,200 kg m 3, ¢} = 1000 m s~'
and c§ = 2080 m s~! for PMMA. For the aluminum alloy, they are E, = 80 GPa, v, = 0.3,
p2=2700 kg m~3, ¢} = 3380 m s~ and ¢ = 6320 m s~!. Since the load history was not
recorded, the loading is assumed to be a linear function of time (i.e. F(r) = At, where A is
a constant). The load is continued to be raised throughout the time span of computation.
To find an appropriate rate of loading, we carried out an initial computation to obtain the
dynamic energy release rate for the stationary crack. In a typical experiment carried out by
Tippur and Rosakis (1991), the crack initiation occurred approximately 90 us after the load
impact (Rosakis, 1992), and measured dynamic initiation toughness was about %, = 150
N m™". To match this energy release rate at t = 90 us in our computations, the loading rate
is set at A = 6700 MN s~ !,
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Fig. 9. Energy release rate as a function of time. The dashed line is for % of the stationary crack.

The crack initiates at ¢ = 90 us. The dynamic % of the propagating crack is shown for three different

toughness criteria ; a constant % model with 1 = 1 and y = 0, two toughening ¥ models (A = 0.3)
withy=02andy=1.

Since the phase angle varies with the characteristic length L and is an important
parameter in the toughness formula (17), the choice of L must be made carefully. A different
value of L would change the resulting crack-tip velocity as well as the energy release rate
and the phase angle. Ideally, the characteristic distance L is set such that 45 () at y(L) = 0°
is the lowest toughness for the interface crack or the toughness curve 4, (y) is symmetric
about y(L) = 0° (Hutchinson and Suo, 1991). This size is usually the microstructural length
scale and its magnitude should be comparable to the size of the K-dominated zone. However,
there is no information available for the PMMA /aluminum alloy interface crack, and we
choose L = 100 um, which is used by O’'Dowd et al. (1992) for the alumina/niobium
interface crack testing. For setting up the toughness formula (17), 4% is computed from
%% = Gp[1+(A—1)sin’ Y] where 4y = 150 N m ' and ¢ = 22° at the initiation (v = 0).
The limiting velocity is computed as vy, = 999.6 m s~! which is essentially identical to c}.

We have carried out the analysis using the proposed dynamic interface toughness
criterion (17) to propagate the crack. Instead of carrying the analysis with arbitrary values
of 4 and y, we have fixed 4 and changed y to get a good agreement between the resulting
velocity and the experimental record of Tippur and Rosakis (1991). Alternatively, one can
keep y constant and change A to obtain the best approximation. Furthermore, it is possible
to carry out a detailed parametric study for various toughening models. However, that is
not our purpose here.

For choosing a proper value of 4, we used the result of a static epoxy/glass interface
toughness testing, where Hutchinson and Suo (1991) suggested A = 0.3 to be the optimum
value. We have carried out several computations with 4 = 0.3 and different values for .
For reference, we also ran the case with A = 1 and y = 0 which is labeled as a “constant %
model”. In this case, the toughness is always constant, independent of the phase angle and
the crack-tip velocity (i.e. ¥p = #4¥). The cases with 4 = 0.3 and y # 0 are denoted as
“toughening ¥ models™ since they require greater ¢ for increasing values of v and Y. We
note that all of the cases must use the iterative scheme discussed in Section 4.3, including
the constant % model, to determine correct crack-tip history.

6.2. Computed results

The linearly increasing load F(¢) is applied at the mid-span of the specimen at t = 0.
After the impact, the compressive stress wave transverses to the crack-tip region. It takes
about 40 us for sizeable loading to build up in the crack-tip region as shown by the dynamic
energy release results in Fig. 9. The crack tip remains stationary until ¢ = 90 us when the
energy release rate rises to the critical value of % = 150 N m™~'. At this time, the crack
initiation occurs and the propagation begins. In the propagation phase, three separate
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Fig. 10. Phase angle as a function of time. The dashed line is for ¢ of the stationary crack. The
results of propagating crack is shown for three different toughness criteria.

results are shown in Fig. 9. Two of them are from the toughening % models (4 = 0.3) with
y = 1 and 0.2. Although we have carried out cases with other values of y, only these results
are shown here for clarity. Between these two criteria, the model with y = 1 has higher 4,
than that with y = 0.2 when v and ¢ are the same. The other model on the figure is the
constant ¢ model (1 = 1, y = 0) where the toughness is always constant regardless of v and
Y. Similar results for the phase angle are shown in Fig. 10. The reason that & of y = 1 has
a faster rise with respect to time can be explained from the rate that energy flows into the
moving crack tip. Al models have the same external loading rate and therefore a similar
rate of energy flow available for the crack to propagate which is expressed as v% (i.e. the
product v¥ of three models are similar all the time). Since the model with y = 1 needs a
greater energy release rate to propagate, it has a larger dynamic ¢ but has a lower crack-
tip velocity than the others (see Fig. 11).

The results for the phase angle are shown in Fig. 10. The phase angle during the early
period (f < 40 us) is meaningless since there is not sufficient crack-tip loading. In the
stationary crack phase, the phase angle starts out with a large value, indicating the presence
of larger antisymmetrical or shear deformation. This condition is caused by the different
wave speeds for PMMA and aluminum, creating uneven loading across the crack plane.
The relative shear steadily decreases as the primary loading tends to that of symmetrical
structural bending, as shown by the drop of ¥ in Fig. 10. This trend reverses once the
crack initiation occurs at ¢ = 90 us. The rapidly propagating crack tip generates large
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Fig. 11. The resulting crack-tip velocity after the initiation for three different toughness criteria.
The experimental data of Tippur and Rosakis (1991} are also shown with circles.
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Fig. 12. Toughness surface of dynamic interface crack defined by ¥ and v space given in (17) for
A =03 and y = 0.2. The path taken by the propagating crack in the simulation is shown on the
surface. (Note the zero suppression on the toughness axis.)

antisymmetrical deformation and the phase angle increases. The increase is largest for the
constant ¥ model since it has the highest crack-tip velocity. As observed in the previous
analysis, a larger v yields greater .

The crack-tip velocity after the initiation is shown in Fig. 11. As described earlier, the
constant ¥ model has the largest v. Since this criterion requires no increase in %, the crack
tip continues to accelerate. The maximum velocity attained by this model at the end of
computation is very close to the Rayleigh wave speed of PMMA, ck = 930 m s~'. On the
other hand, the resistance for fracture increases for the toughening % models as the crack
tip increases its speed. Since the model with y = 1 has a greater resistance to the crack
propagation, it has the lowest velocity history. In Fig. 11, the experimental data obtained
by Tippur and Rosakis (1991) is also shown with circles. As described earlier, we have varied
the value of y to match the resulting crack-tip velocity to the experimental observation. After
trying a few different values, we have determined that the combination of y = 0.2 and
A = 0.3 gives the record of v which is in excellent agreement with the experimental data for
the entire range.

Since the toughness formula (17) is given as a function of v and y, one can create a
toughness surface of the dynamic interface crack for a given set of 4 and y. Such a surface
is shown for A = 0.3 and y = 0.2 in Fig. 12. If this were a correct criterion, the energy release
rate for a given crack-tip velocity and phase angle must always lie on this surface for any
crack propagation to occur. In fact, the path history of the propagating crack simulated
here is shown with dark circles in the figure. Each circle represents a propagation through
an element length. This plot clearly illustrates, starting from initiation at v = 0, how the
crack tip accelerates and the phase angle increases to attain a large level of ¢ under an
increasing driving force. Alternatively, if the crack driving force is reduced, the path on the
surface would reverse its course to a lower level and eventually the crack might arrest
(v = 0). We have also estimated the size of the contact zone and it ranges from r, = 10~*
to 107" ym.

7. DISCUSSIONS

In this work, a new conservation integral has been presented for evaluating the charac-
teristics of dynamic crack propagation along bimaterial interfaces. This formulation allows
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for the extraction of the independent Mode I and Mode II components from the K-field of
the propagating interface crack. When applied to the case of an interface crack in an infinite
domain, a very interesting insight into the influence of crack-tip dynamics was observed. The
results of the energy release rate and phase angle of the dynamic interface crack show
greater sensitivity to the crack-tip velocity than to the modulus mismatch between the two
materials. Thus, many conclusions drawn about crack growth behavior for particular
bimaterial systems under quasi-static growth conditions may not hold under dynamic crack
growth behavior. As the crack-tip speed increases, very rapid growth in the phase angle is
observed at early times, followed by a slower decay to a steady-state value which is far less
sensitive to crack-tip speed than the early time values.

We have presented a new toughness criterion postulated to govern the growth rate of
bimaterial interface cracks. Together with a newly formulated iterative procedure for
computing crack propagation, we present results for computations of arbitrary dynamic
crack growth along interfaces. We have applied this methodology to simulate experimental
results on bimaterial three-point-bend specimens under impact loading conditions. We
demonstrate that with a proper choice of parameters, our toughness criterion is able to
accurately replicate the experimentally recorded interface crack propagation results. It is
to be emphasized that our model involves no “curve fitting” to experimental data. It utilizes
a measured initiation toughness and depends on a choice for a proper wave speed for the
bimaterial system. The new iterative crack propagation technique implements the toughness
criterion and properly releases nodes without any empirical factors.

It is interesting to note that Nakamura et a/. (1989) have discussed a concept of
transition time for the three-point-bend bar under dynamic load. The transition time marks
a shift from when the stress field around the crack tip is dominated by stress waves transient
to a field controlled more by the structural inertia of the deforming beam, The transition
time is also used to measure the stability of the K- or J-dominated crack-tip field. This is a
necessary condition if K or ¢ is used as the critical parameter for the dynamic crack
initiation. Applying the formula given for a homogeneous material (Nakamura ef al., 1989),
we find the transitional time to be ~25 us for aluminum and ~ 80 us for PMMA with given
dimensions of the specimen. Although the precise transition time for the bimaterial specimen
cannot be determined without more detailed study, it is likely that the crack initiation time
(90 us) observed by Tippur and Rosakis (1991) is longer than the transition time.

Simulations such as we have presented should help to provide critical insight into the
proper interpretation of experimental data for dynamic interface cracks. Instead of applying
a proposed toughness formula, one can also use the experimental record of the crack-tip
velocity to propagate the crack. However, as shown by various results in this paper, the
dynamic energy release rate and the phase angle are very sensitive to the crack-tip velocity.
Thus, computed ¢ and ¢ may not be accurate unless precise measurements of the crack-
tip velocity are given at small time intervals. Therefore, in general, varying the toughness
criterion to match the resulting velocity well with the experimental data is probably an
optimum approach. In this manner the dominant crack-tip field parameters associated with
measured crack-tip growth rates are predicted and can be used to interpret the measured
correlation between loading and crack-tip velocity. Though the present work only deals
with an interface crack between isotropic materials, an orthotropic material model can be
incorporated in the procedures shown here. This work is currently in progress.

Acknowledgements—The authors gratefully acknowledge the support of ONR under Grant No. N0001491J1352.
Computations were performed on VAXstations. The finite element analysis was carried out with the ABAQUS
code, which was made available under academic license from Hibbitt, Karlson and Sorenson, Inc., Providence,
RL

REFERENCES

Freund, L. B. (1990). Dynamic Fracture Mechanics. Cambridge University Press, Cambridge.

Freund, L. B. and Rosakis, A. J. (1992). The structure of the near tip field during transient elastodynamic crack
growth. J. Mech. Phys. Solids 40, 699-719.

Hutchinson, J. W. and Suo, Z. (1991). Mixed mode cracking in layered materials. In Advance in Applied Mechanics
(edited by J. W. Hutchinson and T. Y. Wu), Vol. 29, pp. 63-191. Academic Press, New York.



166 C. Y Loeta

Kfouri, A. P. (1986). Some evaluations of the elastic T-term using Eshelby’s method. Int. J. Fract. 30, 301-315.

Kobayashi, T. and Dally, J. W. (1979). Dynamic photoelastic determination of the a-K relation for 4340 steel.
ASTM STP 711, 189-210.

Nakamura, T. (1991). Three-dimensional stress fields of elastic interface cracks. J. Appl. Mech. 58, 939-946.

Nakamura, T. and Lo, C. Y. (1991). Dynamic crack propagation of circumferentially notched bar based on
various growth criteria. In Mechanical Behavior of Material—VI (edited by M. Jono and T. Inoue), Vol. 4, pp.
457-462. Pergamon Press, Oxford.

Nakamura, T. and Parks, D. M. (1992). Determination of elastic T-stress along three-dimensional crack fronts
using an interaction integral. Int. J. Solids Structures 29, 1597-1611.

Nakamura, T., Shih, C. F. and Freund, L. B. (1989). Three-dimensional transient analysis of a dynamically loaded
three-point-bend ductile fracture specimen. ASTM STP 995, 217-241.

O’Dowd, N. P,, Stout, M. G. and Shih, C. F. (1992). Fracture toughness of alumina/niobium interface : exper-
iments and analysis. Phil. Mag. A66(6), 1037-1064.

Ravi-Chandar, K. and Knauss, W. G. (1984). An experimental investigation into dynamic fracture : I11. On steady
state crack propagation and crack branching. Int. J. Fract. 26, 141-154.

Ravichandran, G. and Clifton, R. J. (1989). Dynamic fracture under plane wave loading. Int. J. Fract. 40, 157
201.

Rice, J. R. (1988). Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 55, 98-103.

Rice, J. R. and Sih, G. C. (1965). Plane problems of cracks in dissimilar media. J. Appl. Mech. 32, 418423,

Rosakis, A. J. (1992). Private communication to T. Nakamura.

Rosakis, A. J., Duffy, J. and Freund, L. B. (1984). The determination of dynamic fracture toughness of AISI
4340 steel by the shadow spot method. J. Mech. Phys. Solids 32, 443-460.

Shih, C. F. and Asaro, R. J. (1988). Elastic-plastic analysis of cracks on bimaterial interfaces: part [—small scale
yielding. J. Appl. Mech. 55, 299-316.

Stroh, A. N. (1962). Steady state problems in anisotropic elasticity. J. Math. Phys. 41, 77-103.

Tippur, H. V. and Rosakis, A. J. (1991). Quasi-state and dynamic crack growth along bimaterial interfaces: a
note on crack tip field measurements using coherent gradient sensing. Exper. Mech. 31, 243-251.

Willis, J. R. (1971). Fracture mechanics of interfacial cracks. J. Mech. Phys. Solids 19, 353-368.

Yang, W., Suo, Z. and Shih, C. F. (1991). Mechanics of dynamic debonding. Proc. R. Soc. Lond. 433, 679-697.

APPENDIX: ASYMPTOTIC FIELD FOR DYNAMIC INTERFACE CRACK

The computation of 7 for the dynamic mixed-mode stress intensity factors requires the auxiliary field whose
solutions must be known a priori. The only available analytical fullfield solution for the dynamically propagating
crack is the asymptotic or the steady-state solution obtained by Yang et al. (1991). They have derived the solutions
through the application of Stroh’s formulation (1962). The in-plane stress, displacement and displacement
gradients components can be expressed as

Olg = —2Re [iéLulf’l +icLu2f,2+pU2Aaﬂf:9]s O = 2Re [Lme}’!L
u, =2Re[Aufy], a1 =2Reldopf3), a1 =2Re[dyf3], (AD

0
where the subscripts « and f range 1 to 2, & = \/1—(v/e )% ¢ = /1 —(v/cs)?and () = P Stroh’s formulation

breaks down when v = 0 for isotropic materials, but the limiting solutions as v ~ 0 converge to the corresponding
quasi-static solutions. Also A and L are the following 2 x 2 matrices:

| 4 2i¢ 1+ A2
Aclie 1) Yoel-asry o [ a2
The analytic function f, is
] cnusul/Z—Hs . e—mxzalﬂ—is e
Julz) = . [(1 + 2i¢) cosh nsl wt (1 —2i¢) cosh nsl :|’ (A3)

where z, = £,+1£%, and z, = %, +i{%,. The coordinates £, translate with the moving crack tip along the x,-axis.
The vector I” is the ath row of the inverse matrix L~', w = 4 (—in, 1), W = 1 (in, 1) and the traction resolution
factor n is given in the text.

As shown in (22), explicit forms of stress and displacement gradients must be provided for the computation
of 1. The domain integral also contains the time derivative of displacement. For the steady-state solutions, the
relationship between the spatial and the time derivatives are given as

ou; du, Oy, u; , 0%
ot —Uaxl = —Y,,

g _ = = vlu,,. A4
FTEARAT PO PR Pl (A4

The above relationships are used in determining the time derivatives of the displacement. In the following, all the
necessary displacements and their gradients are given. Since the components of the asymptotic stress (11) are
shown in Yang et al. (1991), they are not given here.

The displacement and its gradients in the K-field can be expressed in the following forms:
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u(r,0;¢e) = Re[Kr“]\/%ﬂ}(();s)+lm[Kr“]\/%:ﬂ'(ﬂ;a),

Re{Krq | Im [Kr¥]
1(r,08) = .08+ i, (0:2),
u,\r,0e ‘/En_ 1 ( \/ﬁ AU
w1, 0:0) = Re[Kr¥] |2l +Im ke |5, 60:0). (a5

The non-dimensional functions for angular variation are given in the following. First the angular functions @(0; )
and @'(0; ) are

D h -t t . . Gt
a(0;e) = Qj%;;?_{ 12 (P,. cosé_ cos% —Pyysiné_ sm%)
+{g (P,. cos&_ cos%-—Pnsmf smé)}
D cosh f . '
#(0;¢) = (ﬂ\;—f—i%i)—{fé'“ (P., cosé_ sin% +Psiné_ cos%)

+{ir (le cos&_ sin% +Py,ysiné_ cos%)},

. (uDcosh ne) " . ¢ . &
@'(0;e) = —‘/—l_;_zsz—{ 42 (—P“ sin&_ cos> —Pycos¢_ smi)

+CC."2( Pusing_ °°sc_‘Pzzcosf smc‘)}

2
#(0;e) = M{fﬂ“ (—P,, siné_ sin§l +Pycos¢_ cos§>

N 2 2

+C."z< — Py, sin§_ smc2+Pncosé COS'C")}- (A6)

The angular functions & ,(8; &) and 4}',(0; &) are

@ ,(0;¢) = (uDcosh ne)~! {é—uz <1>,, cos &, cosf2 + Pyysiné, smi)
o —p 4 PN ¢
s — Py oos(ocos-z— —Pyysin smi s

#,(0;¢) = (uDcosh ne)~! {féf 12 (P. , €08 &, sin% — P,y sin &y cos %)

+{7'" (Pz. cos {, sin% — Py sin {, cos%)},

@'(8;¢) = (uDcoshme) ™’ {C,‘"’ (—P,. sin éocos% + P c08 &, sin%)

+{g ( — Py sin{, cosc2 + P, cos {, sin Cz)}

iy, (0;¢) = (uDcoshne)™' {éé iz ( Py sing, sin% —P;cosé, cos%)

+C;"2(—Pz. sin Cosin%—Pncos(ocos%». (A7)

The angular functions & ,,(6; &) and &', ,(9; &) are

-1
@008 = M{C:’” (P,, cosé, c(:ns—35 +Psiné, sin&)

J1+48 2 2

+{o (Pzn cosé, 005% +Pysiné, smﬁ)},

SAS 31:2-C
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3¢

Dcoshne) ™' n ; i
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2 . 3¢, . 3
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where the coefficients P;; are
Py, = 1+ coshe(m~&) — 29 sinhe(r~&),
Py = (1+ ) sinhe(n— &) 2yl coshe(n — &),
Py = n{1 + ) sinhe(n—{)— 2L sinhe(n—{,},
Py = p(1 + ) coshe(n—{,)—2Esinhe{n—{,). (AS)

The factors in the above equations are

—
& = fl—(vs;w), L=tan”'($tanf), &y =elé, £, = ttan™'2s,
L

: 2
{ = 1—(%‘.“-9), {=tan"' (Ctanf), {o=celnl, [, ={o+tan"'2e. (A10)
-3

Also, D = 4¢{ — (1 —¢%)? For determining the values in the upper (0 € 6 < =) and lower regions (—=n < 6 < 0),
use the appropriate shear modulus, shear and longitudinal wave speeds of the respective material. In the lower
plane, z should be multiplied by —1 in (A3) and (A9).



